
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6207 25

Android OS for Embedded Real-Time Systems

Smita Sontakke
1
, Jagruti Thombare

2
, Pournima Lad

3

Student, Computer Engineering, Bharati Vidyapeeth Institute of Technology, Navi Mumbai, India
1, 2

Professor, Computer Engineering, Bharati Vidyapeeth Institute of Technology, Navi Mumbai, India
3

Abstract: Since Android is recently publicly introduced, Android has taken the interest from companies and the

common Audience. This software platform has been constantly enhanced either in term of features or supported

hardware; these are extended to new types of devices different from the originally contracted mobile ones. However,

there is a feature that has not been researched yet - its real-time capabilities. This paper proposes to remove this gap and

provide a basis for discussion on the appropriateness of Android in order to be used in Open Real-Time environments.

By analysing the software platform, with the main goal of the virtual machine and its underlying operating system

environments, we are able to point out its current restrictions. And using this, we are able to provide a hint on different

angel of directions in order to make Android suitable for the environments. It is our position that Android may

contribute a suitable architecture for real-time embedded systems, but the real-time community should address its

restrictions in a joint effort at all of the platform layers.

Keywords: Android, Open Real-Time Systems, Embedded Systems, Suitability.

I. INTRODUCTION

Android was made available for the public in the year

2008. Being considered a new technology, due to the fact

that it is still being essentially improved and upgraded in

terms of features or firmware, Android is obtaining

strength both in the mobile industry and in other industries

with different hardware architectures. The growing interest

from the industry comes from two core aspects: its open-

source nature and its architectural model. Being an open-

source project, allows Android to be fully imagined and

understood, which empowers feature comprehension, bug

fixing, further progress regarding new functionalities.

Linux kernel-based architecture also includes the use of

Linux to the mobile industry, granting access to take

advantage of the knowledge and is featured by Linux.

Both of these aspects make Android an achieving target to

be used in other type of environments. Another aspect that

is necessary to consider when using Android is, its own

Virtual Machine environment. In the use of Virtual

Machine environment its feature is based on java that

orders Android applications with both its advantages.

Nevertheless, there are features which have not been tested

yet, as for instance the correctness of the platform to be

used in Open Real-Time environments. Taking into

concern, works developed before such as [1] [2] regarding

the Linux kernel or VM environment, there are the

possibilities of proposing temporal guarantees associated

with Quality of Service guarantees in each of the

preceding layers, in a way that integration may be

achieved, fulfilling the physical constraints established by

the applications.

This integration may be helpful for multimedia

applications requiring specific machine resources that

need to be guaranteed in an advanced and timely manner.

Therefore, taking advantage of the real-time efficiency and

resource that are optimized and are applied by the

platform.

II. HISTORY

The versions 2.6.23, the standard Linux kernel handles the

Fair Scheduler, which gives fairness in the way that CPU

time is given to tasks. These balancing guarantees that all

the tasks will have the same CPU share and each time that

is unfairness is verified.

Android uses its own VM named “Dalvik”, which was

specially developed for hands free mobile devices and

contains memory consumption, battery power saving and

low frequency of all CPU. It is based on the Linux kernel

for the core operating system such as memory

management and scheduling and hence, gives the

disadvantage of not taking any guarantees into

deliberation. The thesis in this paper is a chunk of the

Cooperative Embedded Systems project [3], which aspires

at the implementation of a QoSaware framework;

determine in [4], to be used in an open and dynamic

cooperative environment. Due to the environments nature,

the framework should support resources before and

guarantee that the real-time execution restrain imposed by

the applications are satisfied.

In the outlook of the project, there was the need of

appraising Android as one of the target solutions to be

used for the framework’s implementation. As a result of

this assessment, this paper addresses the probable of

Android and the implementation advice that can be

accepted in order to make it available in Open Real-Time

environments. However, our focus is on to soften the real-

time applications and accordingly, hard-real time

applications were not examined in our evaluation.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6207 26

III. ANDROID’S ARCHITECTURE

Android is open-source software architecture conducted

by the Open Handset Alliance [5], a group of 71

technology and mobile companies whose motto is to

provide a mobile software platform. The Android platform

comprises of an operating system, middleware and

applications. As for the features, Android consolidates the

features found in any mobile device platform, such as

application framework reusing, integrated browser,

optimised graphics, media support, network technologies,

etc. The Android architecture, illustrated in Figure 1, is

made by five layers: Applications, Application

Framework, Libraries, Android Runtime and finally the

Linux kernel. The uppermost layer, the Applications layer,

provides the core set of applications that are frequently

offered out of the box with any mobile device. The

Application Framework layer gives the framework

Application Programming Interfaces used by the

applications working on the uppermost layer.

Apart from the Application Programming Interfaces, there

is a set of services that allows the access to Android’s

main aspects such as graphical components, event

managers and activity managers. Below the Application

Framework layer, there is another layer having two

important parts: Libraries and the Android Runtime. The

libraries provide core features to the applications. Among

all the libraries given, the important library are lib c, the

standard C system library accommodate for embedded

Linux-based devices; the Media Libraries, which support

recording of various audio and playback formats; a

lightweight relational database engine, Graphics Engines

and 3D libraries Regarding the Android Runtime, Dalvik

[6] was designed from blemish and it is specifically aimed

for memory related and CPU related devices. It runs Java

applications and dislikes the standard Java Virtual

Machines, which are stack-based; Dalvik is a multiple

register-based machine. The version 2.6 of Linux kernel is

the endmost layer and is a hardware abstraction layer that

allows the intercommunication of the upper layers with the

hardware layers via device drivers.

Fig1. Android Architecture

IV. SUITABILITY OF ANDROID FOR OPEN REAL

- TIME SYSTEMS

This part discusses the appropriateness of Android for

open embedded real-time systems; inquire its architecture

internals and mark out its current limitations. Android was

appraised considering the following topics: its VM

environment, the underlying Linux kernel, and its resource

management comp entice. Dalvik VM is able of running

multiple independent processes.

Therefore, each Android application is graphed to a Linux

process and able to use an inter-process communication

mechanism, based on Open-Binder [7], to communicate

with other processes in the system. The capability of

separating each process is given by Android’s architectural

model. During boot time, there is a process culpable for

starting up the Android’s runtime, which implies the start-

up of the VM itself. Built in to this step, there is a VM

process, the Zygote, culpable for the pre-initialisation and

pre-loading of the Android’s classes that will be the

applications. Later, the Zygote opens a socket that takes

commands from the application framework whenever a

new Android application has begun. This will affect the

Zygote to be angled and create a child process which will

then be the target application.

This model is presented in Figure 2. The approach is

favourable for the system as, and it is possible to save

RAM to speed up each application start up process.

Android applications provide the synchronisation

mechanisms known to the Java community. The VM

controls all the threads an internal structure where all the

created threads are graphed. The Graphical Collector will

only run when all the threads attributing to a single

process are appended, in order to avoid in consistent

states. The GCs have the hard task of handling dynamic

memory management, as they are caught hold for deal

locating the memory allocated by objects that are no

longer needed by the applications.

Relating to Android’s garbage collection process, as the

processes run individually from other processes and each

process has its own heap and a shared heap – the Zygote’s

heap- Android runs independent illustrations of GCs with

a motive to collect memory that is not going to be used

anymore. Thus, each process heap results into garbage that

is collected independently, through the usage of parallel

mark bits that specify which objects

This process is particularly useful in Android due to the

Zygote’s shared heap, which in this case is kept unattained

by the GC to put memory to a better use.

At present, the Linux kernel suggests two classes of real-

time scheduling, as a part of the agreement with the

POSIX standard [8], SCHED RR and SCHED FIFO.

SCHED FIFO used for a first-in, first-out scheduling and

SCHED RR for a round robin scheduling. These

scheduling methods have a huge effect on system’s

performance if irrelevant programming applies. However,

many of the tasks are scheduled with SCHED OTHER

class that is a non real-time scheduling method. The task

scheduling plays one of the most important roles regarding

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6207 27

the real-time features granted by a particular system. Two

scheduling real-time classes are currently limited to Linux

real-Time system; they are based on priority scheduling.

More important aspect to be studied in the assessment is

that most of the tasks are scheduled by CFS. Even though

CFS tries to optimise the time, a task is waiting for CPU

time. At the kernel level, with the exception of the CPU

and memory, all the remaining system’s hardware is

accessed via device drivers, in order to perform its

operations and control the resources’ status.

Fig2.Zygote Heap

V. POSSIBLE DIRECTIONS

This part explains the four possible ways to consolidate

the required real-time behaviour into the Android

architecture. The first approach includes the restoration of

the Linux operating system by one that gives real-time

features and, at the parallel time, it estimates the enclosure

of the real-time Virtual Machine. The second approach has

the Android standard architecture by proposing the

extension of Dalvik among other things that change over

the standard operating system through the real-time Linux-

based operating system. The third approach regains the

Linux operating system for a Linux real-time version plus

real-time applications use the kernel directly. At last, the

fourth approach requires the expansion of a real-time

hypervisor. Regarding the first approach, interpreted in

Figure 3, this approach changes the standard Linux kernel

with a real-time operating system. This adjustment

recommended predictability and determinism in the

Android architecture. As a result, it is probable to suggest

new dynamic real-time scheduling policies over the usage

of scheduling classes; predict priority inversion and to

contain superior resource management methods.

The second change, within the first approach, is the

extension of the real-time Java Virtual Machine. This

change is studied profitable as, it is apparently to contain

bounded memory management; real-time scheduling

within the VM, rely on the selected explanation; inferior

synchronisation mechanisms and lastly end preference

inversion. This improvement is considered the most

authoritative in gaining the required behaviour at the VM

level.

Fig3.Android full Real-Time

The more benefit given from this approach is that it is not

important to maintain the release cycles of Android, even

if some integration problem may occur between the

Virtual Machine and the kernel. The brunt of introducing a

new VM in the system is similar to the fact that all the

Android must be implemented as well as dex in the

interpreter. Apart from this, other challenges may be such

as the integration between both VMs.

The second recommended approach, given in Figure 4,

also presents changes in the architecture both in the

operating system and virtual machine environments. As

for the operating system layer, the advantages and

disadvantages shown in the first approach are compared

equal, as the principle behind it is the equal.

Fig4.Android Extended

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 6, Issue 2, February 2017

Copyright to IJARCCE DOI 10.17148/IJARCCE.2017.6207 28

The third recommended approach, represents in Figure 6,

it is also based in Linux real-time. This approach takes

benefit of the native environment, where it is probable to

open the real-time applications directly over the operating

system. This can be beneficial for applications that do not

required the VM environment, which means that a

minimal effort will be required for integration, while

having the same expected behaviour. On the other hand,

applications that required a VM environment will not help

from the real-time services of the hidden operating system.

VI. CONCLUSION

At first glance, Android looks like a potential target for

real-time environments and, there are various industry

targets that would help from an architecture with such

facility. Taking this into consideration, this paper

introduced the assessment of the Android platform to be

used as a real-time system. By focusing on the importance

parts of the system it was probable to uncover the

limitations and then, to current four probable directions

that may be followed to add real-time behaviour of the

system.

Android was constructed to deliver the mobile industry

purposes and that fact has an impact on the way that the

architecture might be used. However, with some effort, as

proven by the presented approaches, it is possible to have

the desired Real-Time behaviour on any Android device.

Fig5.Android with a Real-Time Hypervisor

Finally, the fourth approach depicted in Figure 5, employs

a real-time hypervisor that is capable of running Android

as a guest operating system in one of the partitions and

real-time applications in another partition, in a parallel

manner. This approach is similar to the approach taken by

the majority of the current real-time Linux solutions, such

as RTLinux [9] or RTAI [10]. These systems are able to

run real-time applications in parallel to the Linux kernel,

where the real-time tasks have higher priority than the

Linux kernel tasks, which means that hard real-time can be

used.

ACKNOWLEDGEMENT

Thanks to our guide, and our college management for

providing the resources and helping us in all the possible

ways. We also thank readers of this journal for showing

interest in this topic and contributing towards the

enhancement of this topic as well.

REFERENCES

[1] RTMACH, “Linux/rk,” Mar. 2010. [Online]. Available:

http://www.cs.cmu.edu/∼rajkumar/linux-rk.html

[2] Corsaro, “jrate home page,” Mar. 2010. [Online]. Available:

http://jrate.sourceforge.net/

[3] CooperatES, “Home page,” Jan. 2010. [Online]. Available:
http://www.cister.isep.ipp.pt/projects/cooperates/

[4] L. Nogueira and L. M. Pinho, “Time-bounded distributed qosaware

service configuration in heterogeneous cooperative environments,”
Journal of Parallel and Distributed Computing, vol. 69, no. 6, pp.

491–507, June 2009. 69
[5] O. H. Alliance, “Home page,” Jun. 2010. [Online]. Available:

http://www.openhandsetalliance.com/

[6] D. Bornstein, “Dalvik vm internals,” Mar. 2010. [Online].
Availablehttp://sites.google.com/site/io/dalvik-vm-internals

[7] P. Inc., “Openbinder 1.0,” Mar. 2010. [Online]. Available:

http://www.angryredplanet.com/∼hackbod/openbinder/
[8] IEEE, “Ieee standard 1003.1,” Mar. 2010. [Online]. Available:

http://www.opengroup.org/onlinepubs/009695399/
[9] W. R. Systems, “Real-time Linux,” Jun. 2010. [Online]. Available:

http://www.rtlinuxfree.com/

[10] P. d. M. Dipartimento di Ingegneria Aerospaziale, “Real-time
application interface for Linux,” Jun. 2010. [Online]. Available:

https://www.rtai.org/

http://www.openhandsetalliance.com/
http://sites.google.com/site/io/dalvik-vm-internals
http://www.opengroup.org/onlinepubs/009695399/
http://www.rtlinuxfree.com/

